

CLL SOCIETY

Smart Patients Get Smart Care™

CAR-T Ed Forum: The Basic Science and Latest Data

April 21, 2021

10:00 AM PT, 11:00 AM MT, 12:00 PM CT, 1:00 PM ET

This program was made possible by grant support from

abbvie

^{III} Bristol Myers Squibb[™]

Genentech

A Member of the Roche Group

UNOVARTIS

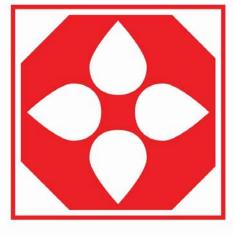
Agenda and Speakers

Patricia Koffman, CLL Society

John M. Pagel, MD, PhD Swedish Cancer Institute

Larry Saltzman, CLL SOCIETY MD Leukemia & Lymphoma

Brian Koffman, MDCM (retired), MSEd CLL Society



Tanya Siddiqi, MD City of Hope National Medical Center

Sharon Saltzman Caregiver

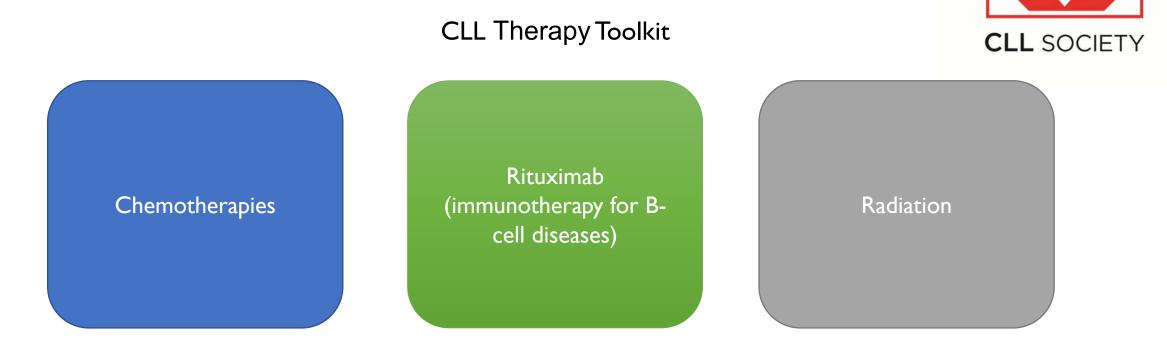
Agenda				
1:00 PM EST	Welcome	Patricia Koffman		
1:05 PM	CAR-T and CLL: A Patient and Caregiver Journey	Dr. Larry Saltzman and Sharon Saltzman		
1:20 PM	Introduction to the Science and Future of CAR-T and Other Immune Therapies	Dr. John Pagel		
1:45 PM	The Present State of the Art in CLL	Dr. Tanya Siddiqi		
2:10 PM	CLL Society's Programs & Resources	Patricia Koffman		
2:20 PM	Audience Q&A	Drs. Koffman, Pagel, Siddiqi, and Saltzman		
2:57 PM	Closing Remarks	Dr. Brian Koffman		

CLL SOCIETY

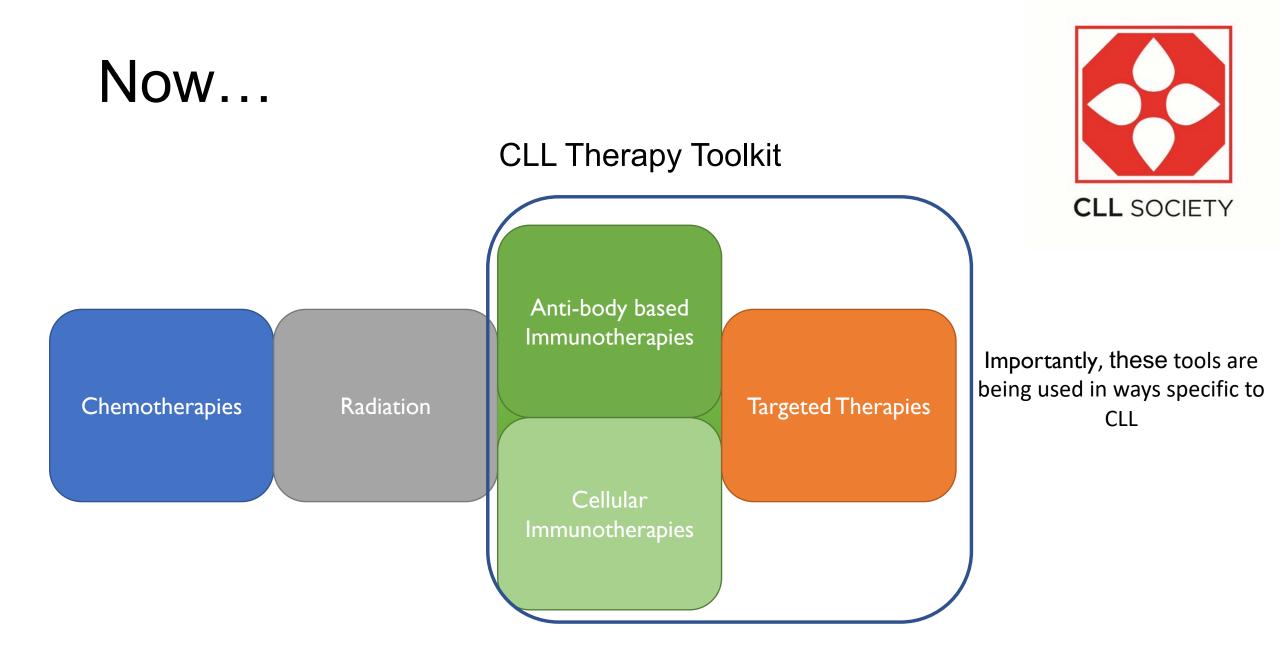
Smart Patients Get Smart Care™

Immunotherapy: A New Paradigm For Treatment

John M. Pagel, MD, PhD


April 21, 2021

Not So Long Ago...



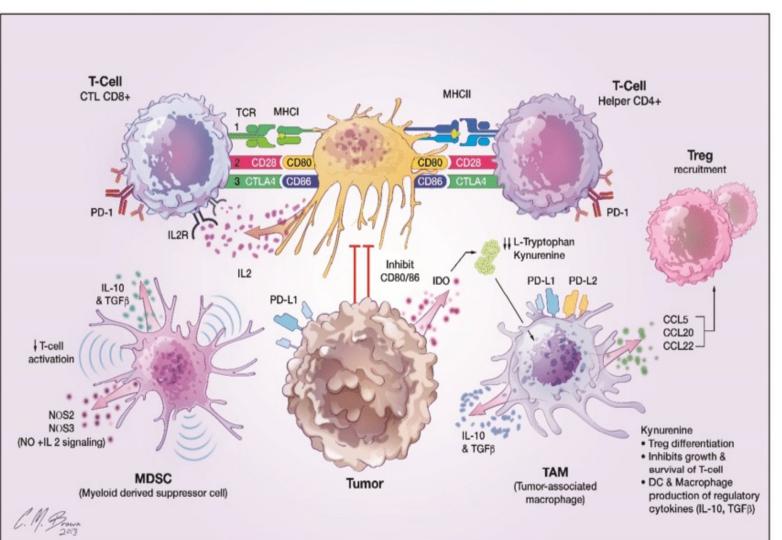
Generally applied to CLL patients

Then...

Rituximab markedly improved outcomes in NHL Again, these tools largely applied to all CLL

Science 2013 \$10

Breakthrough of the Year


Cancer Immunotherapy

T cells on the attack

MAAAS

Immunotherapy

- Immune system long recognized as having ability to fight CLL
- CLL (like other cancers) can "hide" from the immune system

New Paradigm

The immune system is the "agent" that improves outcome and *CURES* people with systemic cancer.

Fundamental shift in our understanding of cancer

Summary Of The Old Era

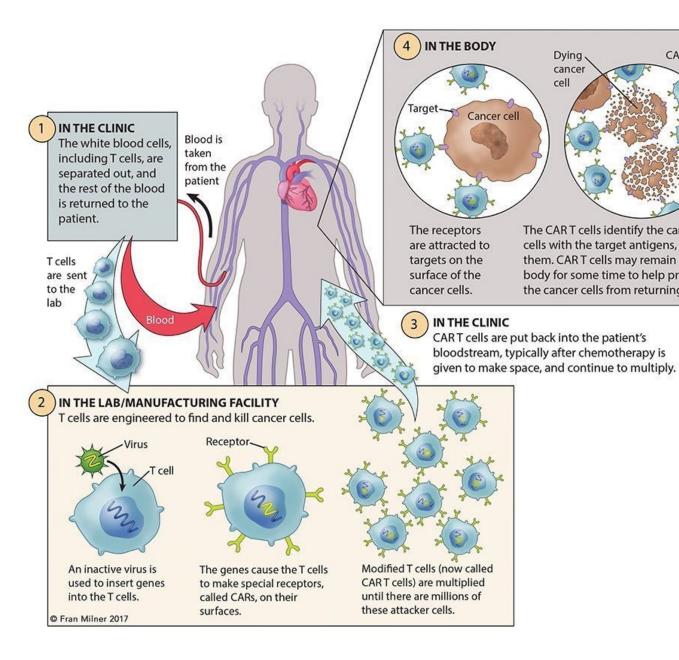
- Therapies are non-specific
- Allogeneic transplant may be the ultimate adoptive immunotherapy

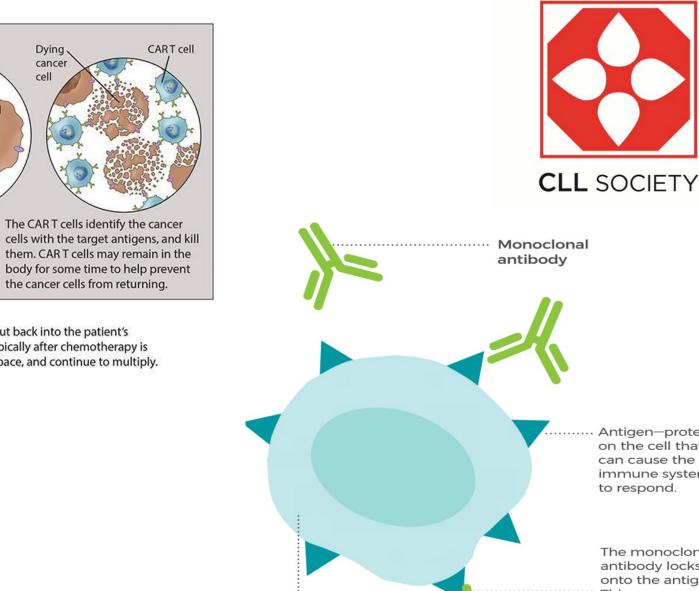
 $_{\odot}$ Comes with a potential price

Other therapies (IFN, vaccines, etc.) have more modest benefit

 Immune responsiveness may be an important concept
 Disease specific (FL different than DLBCL which is different than HL)

Immunotherapy Types


Anti-body based Immunotherapies Medicines (typically infusions) given to enhance native immune activity against lymphoma


"Off-shelf"

Cellular Immunotherapies Genetically modified immune cells ("living drug") given to patients to fight lymphoma

May require time to make specifically for patients

Use of either might depend on the individual circumstances for the patients Potential for combinations of both types of immunotherapy

eri

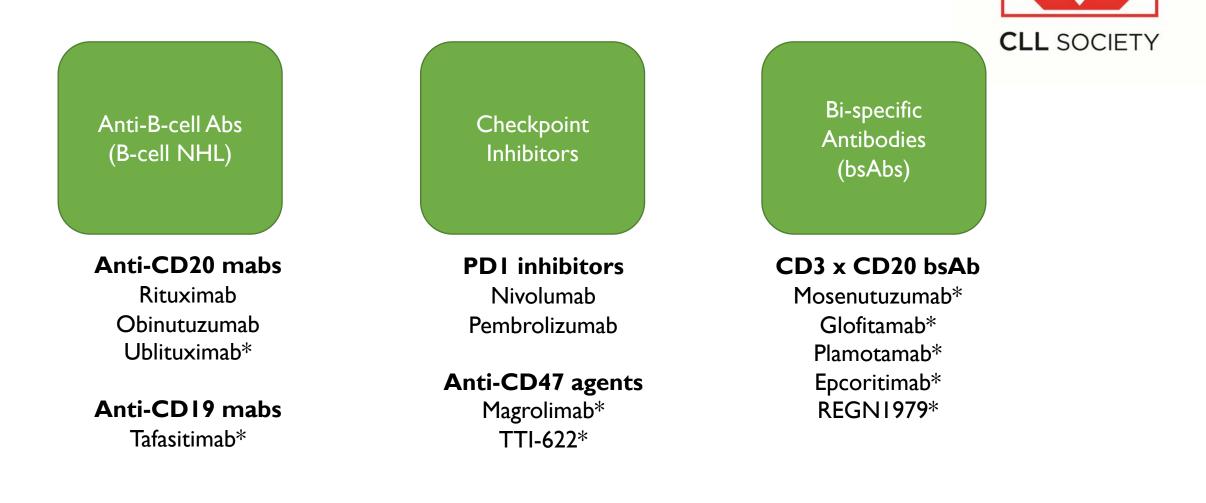
ell

Dying

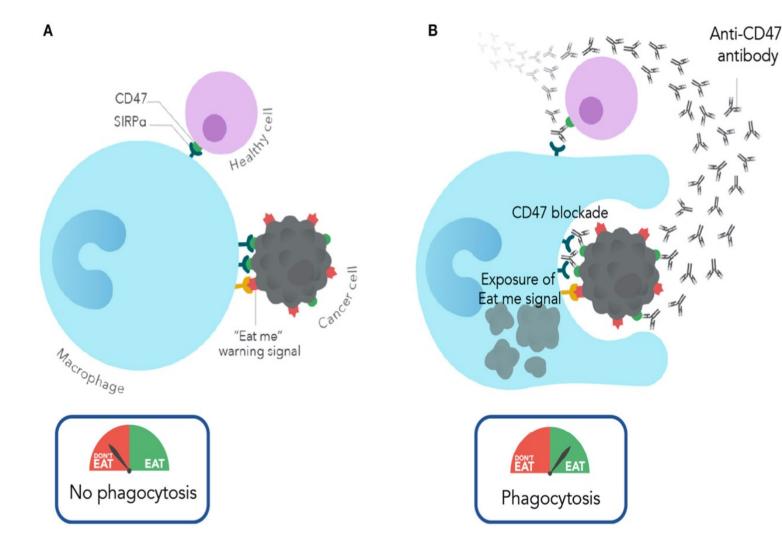
cancer cell

> Antigen-protein on the cell that can cause the immune system to respond.

The monoclonal antibody locks onto the antigen. This can cause the immune system to attack the cancer cell.

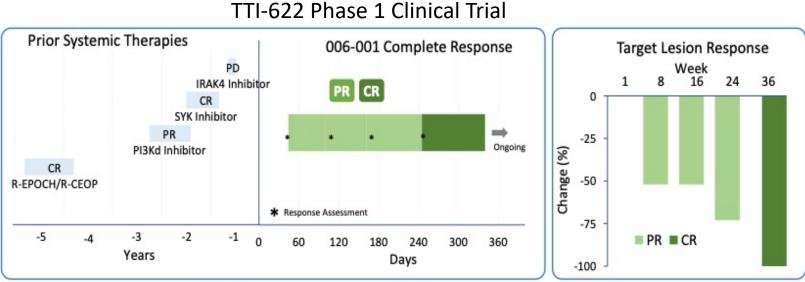

cancer.gov

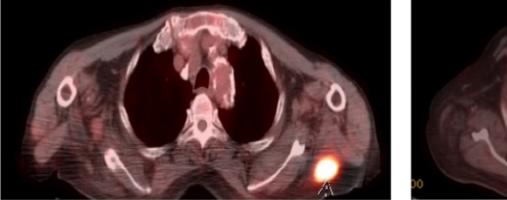
The New Era

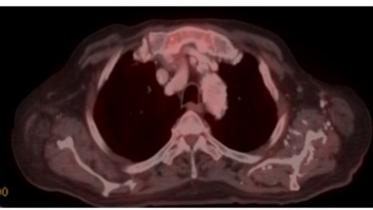


- Checkpoint inhibitors
- A host of other antibody approaches
- Cell-based therapies
- Combination strategies
- Signaling pathway inhibitors (PI3K, BTK as examples)
- CAR-T cell therapy

Antibody Based Immunotherapy

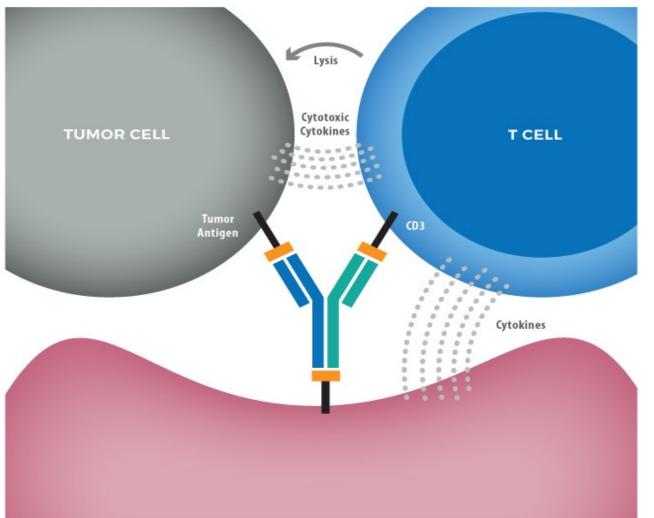

Anti-CD47 Agents





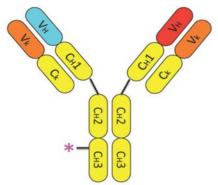
- Immune cells (macrophages) can destroy cells which express an "Eat me" signals (several types)
- Cancer cells express "Eat me" and "Don't eat me" signals (CD47) to avoid destruction by macrophages
- Normal cells express "Don't eat me" signals but mostly do not express "Eat me" signal, allowing these treatments to be selective

Anti-CD47 Agents

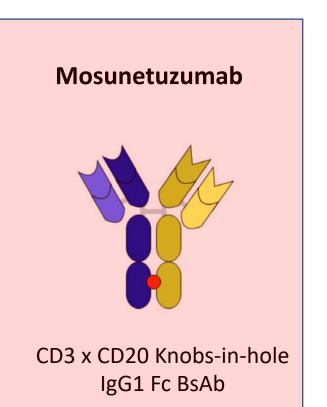


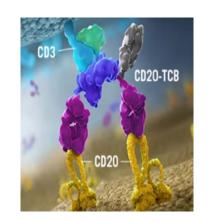
- Anti-CD47 agents have shown clinical activity in both B-cell and T-cell lymphomas in early stage studies
- Side effects appear generally mild and reversible; these therapies may be reasonable to combine with other therapies
- Further studies needed and underway

Bispecific Antibodies



- Two-sided antibody
 - \circ One side binds cancer cell
 - One side binds immune cell
- Helps activate immune cells to destroy cancer cells
- Lots of different designs to change the properties of these therapies


Bispecific Antibodies


REGN1979

CD3 x CD20 Common LC IgG4 Fc BsAb

Glofitimab (CD20-Tcb)

Palotamab (Xmab13676)

CD3 (Fab) x CD20 (Fab x2) CD3 (sc Fc BsAb

CD3 (scFv) x CD20 (Fab) Fc BsAb

Mosunetuzumab in R/R NHL

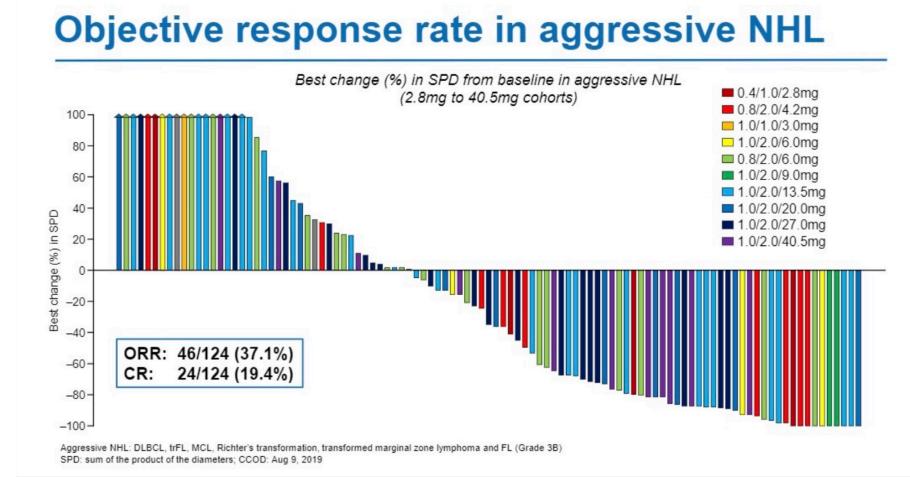
Patient population

N=270*		
Median age, years (range)	62 (19-96))
Male	172 (63.7%)
ECOG PS 1 at baseline	164 (61.2%)†
Aggressive NHL	180 (66.7%)
DLBCL	117 (43.3%) 30 ptc with prior CAP T thorapy
trFL	32 (11.9%)	
MCL	23 (8.5%)	 17 DLBCL, 8 trFL, 5 FL
Other	8 (3.0%)	 Median 5 lines of prior systemic
Indolent NHL	85 (31.5%) therapies (range 3–14)
FL	82 (30.4%	 29 pts (96.7%) refractory to
Other	3 (1.1%)	prior anti-CD20 therapy
Median prior systemic therapies, n (range)	3 (1-14)†	 25 pts (83.3%) refractory to last
Prior CAR-T therapy	30 (11.1%)	
Prior autologous SCT	77 (28.5%	 22 pts (73.3%) refractory to
Refractory [‡] to last prior therapy	194 (71.9%	
Refractory [‡] to prior anti-CD20 therapy	233 (86.3%)

CCOD (clinical cut-off date): Aug 9, 2019; *safety evaluable pts; †n=268, as two pts did not have data entered by CCOD; ‡no response (PR or CR) or PD within ≤6 months of treatment; trFL, transformed FL;

Mosunetuzumab in R/R NHL (Indolent)

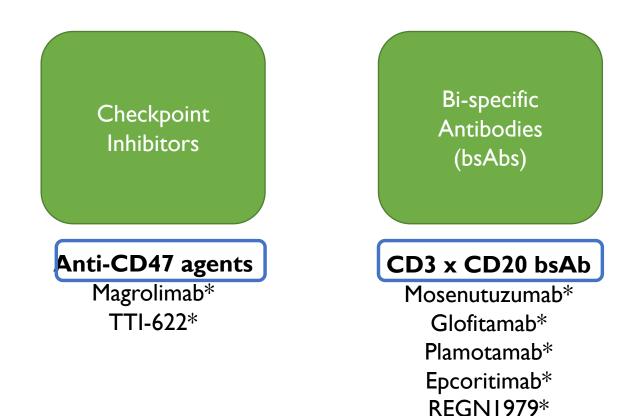
Objective response rate in indolent NHL



- In this early stage study, >60% of patients with indolent B-cell lymphoma had responses
- ~40% had complete responses

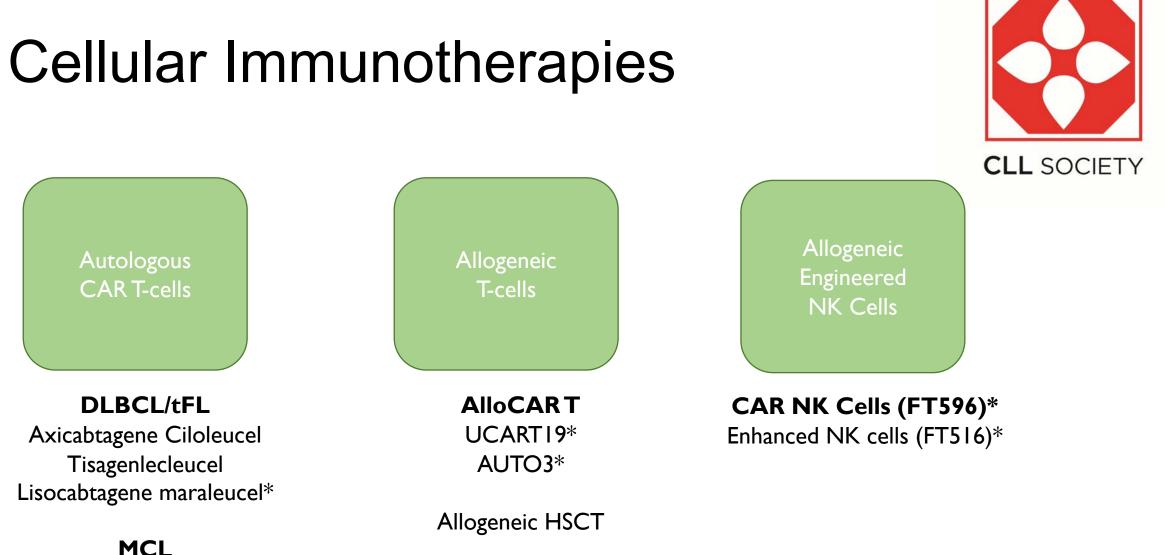
Indolent NHL: FL (Grade 1–3A), marginal zone lymphoma and small lymphocytic lymphoma CCOD: Aug 9, 2019

Mosunetuzumab in R/R NHL (Aggressive)

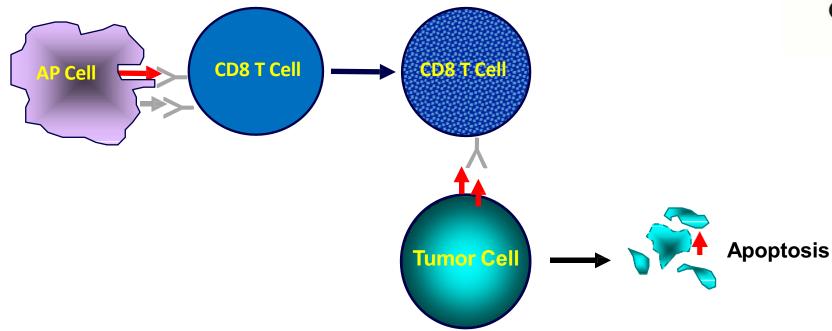


In this early stage study, ~40% of patients with aggressive B-cell lymphomas had responses

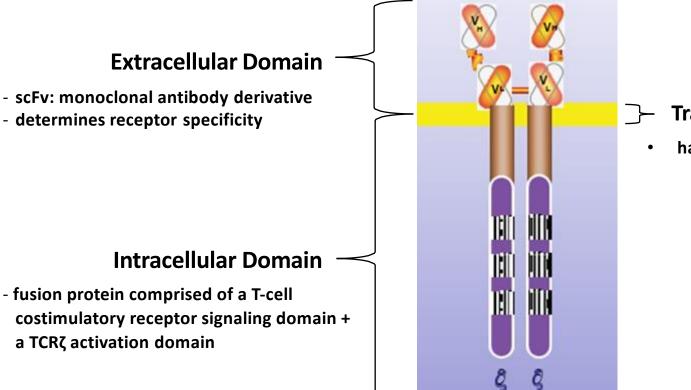
•


Half of responders had complete responses

Antibody Based Immunotherapy

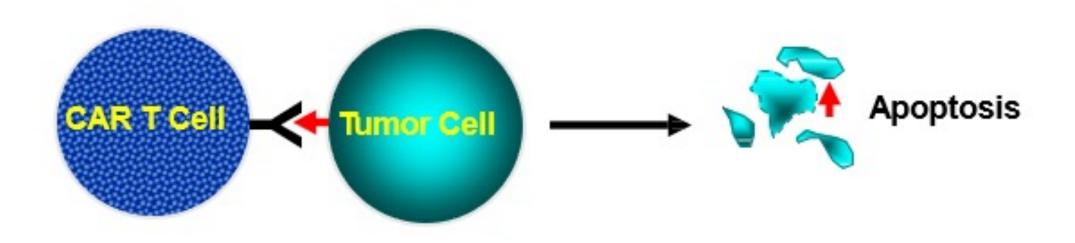

- Lots to still work out, but generally good activity and manageable side effects
- Promising steps forward

Brexucabtagene autoleucel



Mechanisms of Cytotoxic T Cells

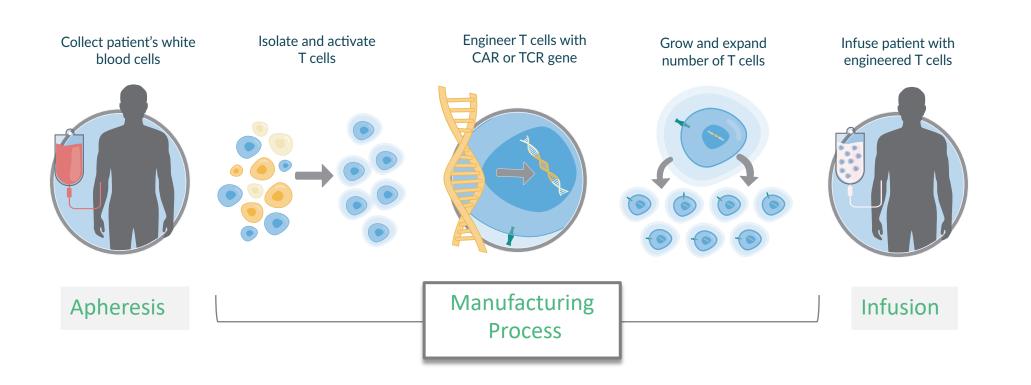
Generic Chimeric Antigen Receptor (CAR)



- Transmembrane Domain

has an extracellular spacer / hinge region

Action of Chimeric Antigen Receptor-Modified (CAR) T Cells



Chimeric Antigen Receptor T-Cells

ENGINEERED AUTOLOGOUS CELL THERAPY

Phase I TRANSCEND CLL 004 (Cohort 1): Lisocabtagene Maraleucel in R/R CLL, Including Prior Ibrutinib Treatment

Outcomes	Patients (n = 23)	Pts Ref to BTKi, Ven (n = 11)
ORR, %	82	80
 CR/CRi 	45	60
Median DoR, mos	NR	
15-mo DoR, %	53%	
18-mo DoR, %	50%	
Median PFS, mos (95% CI)	18 (3.0-NR)	
MRD evaluable, n	n = 20	n = 9
 uMRD (blood), % 	75	78
uMRD (BM), %	65	67

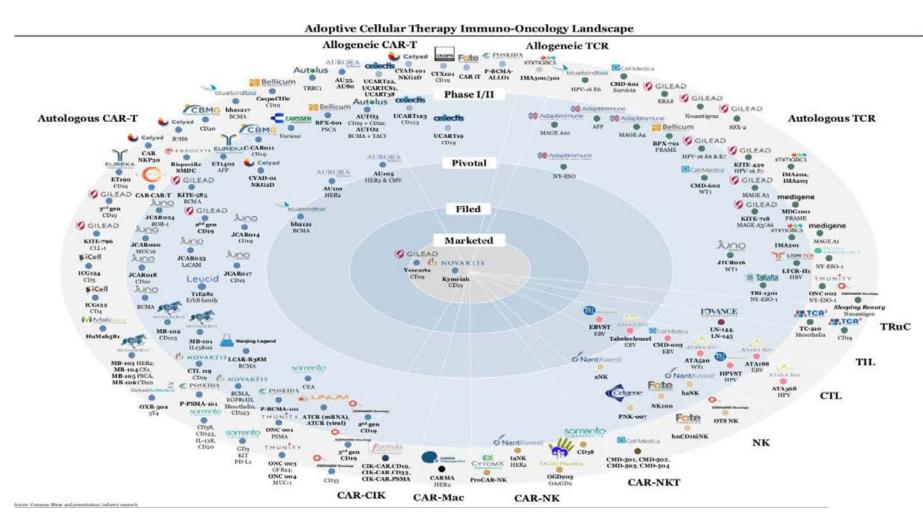
- Phase I/II trial in R/R CLL with ≥ 3 prior therapies (or ≥ 2 and high risk), including BTKi
- N = 23 (safety), 22 (efficacy)

Median 6 prior lines of therapy, 100% prior BTKi, 48% refractory to BTKi and venetoclax

- Three days of lymphodepletion (fludarabine and cyclophosphamide) → liso-cel infusion with 50 × 10⁶ or 100 × 10⁶ CAR+ T-cells
- AEs similar to previous reports

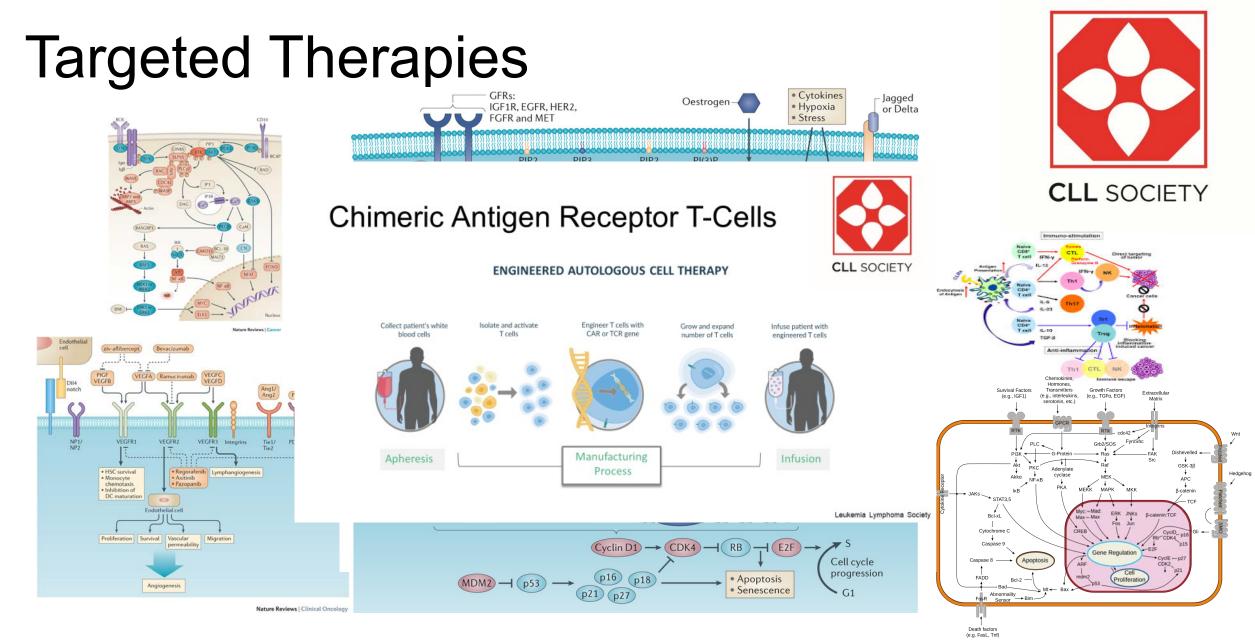
Phase I Transcend CLL 004 (Combination Cohort): Lisocabtagene Maraleucel + Ibrutinib In R/R CLL

- Phase I liso-cel + ibrutinib combination cohort (n = 19)
- Start or continue ibrutinib through leukapheresis and for ≥ 90 days after liso-cel infusion (50-100 x 10⁶)

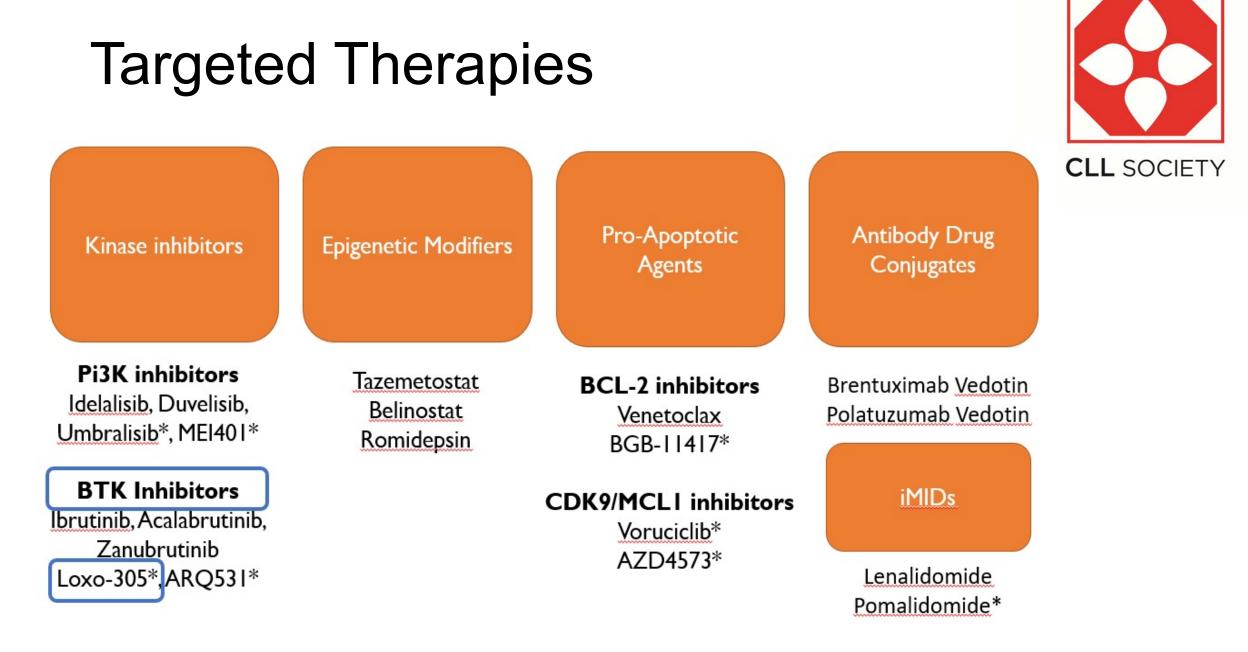

Enrollment Criteria:

- 1) PD on ibrutinib at study enrollment
- 2) High-risk, no CR on \geq 6 mos ibrutinib
- 3) BTK or PLC γ 2 mutation, with or without PD on ibrutinib
- 4) Prior ibrutinib, no contraindication to restarting ibrutinib

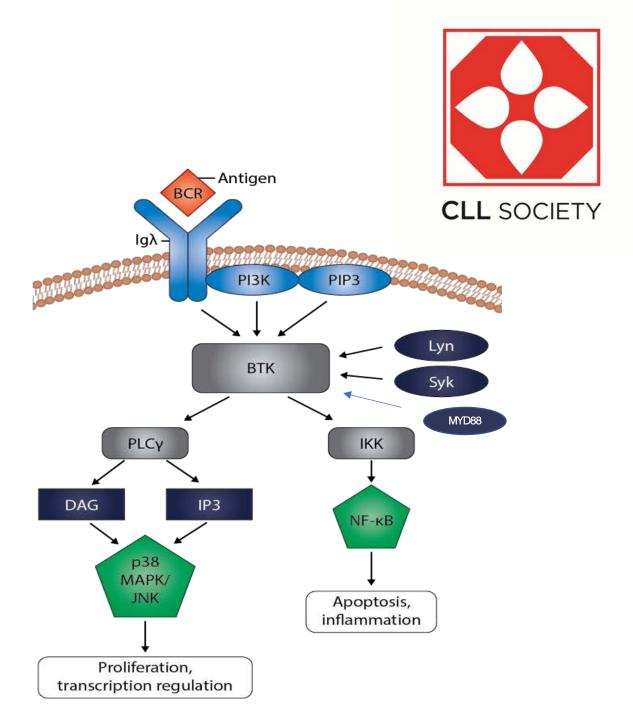
- Most common grade ≥ 3 TEAEs: Neutropenia or neutrophil count decrease (89%), anemia (47%), and febrile neutropenia (26%)
- CRS: 74% (1 grade 3); neurologic AE (32%)
 37% required tocilizumab/corticosteroids
- Ibrutinib-related AEs: Diarrhea (n=7), HTN (n=4), AF (n=1), rash (n = 1)


Outcomes, %	Patients (n = 19)	
ORR	95	
CR/CRi	47	
MRD evaluable, n	n = 19	
 uMRD (blood), % 	89	
uMRD (BM), %	79	

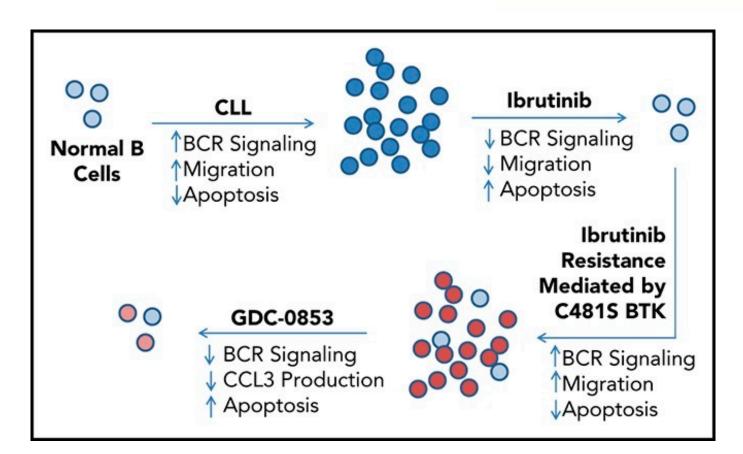
Cellular Immunotherapies: Just the Beginning



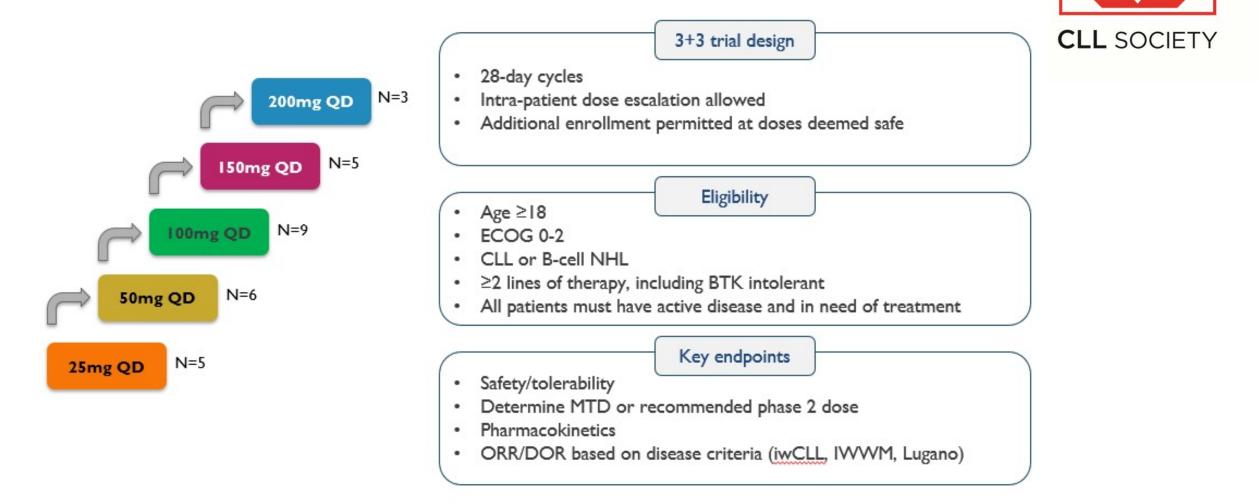
Broad development in Blood cancers and solid tumor cancers



Interfere with specific molecules ("molecular targets") important in the growth, progression, and survival of cancer cells.


Targeting BTK

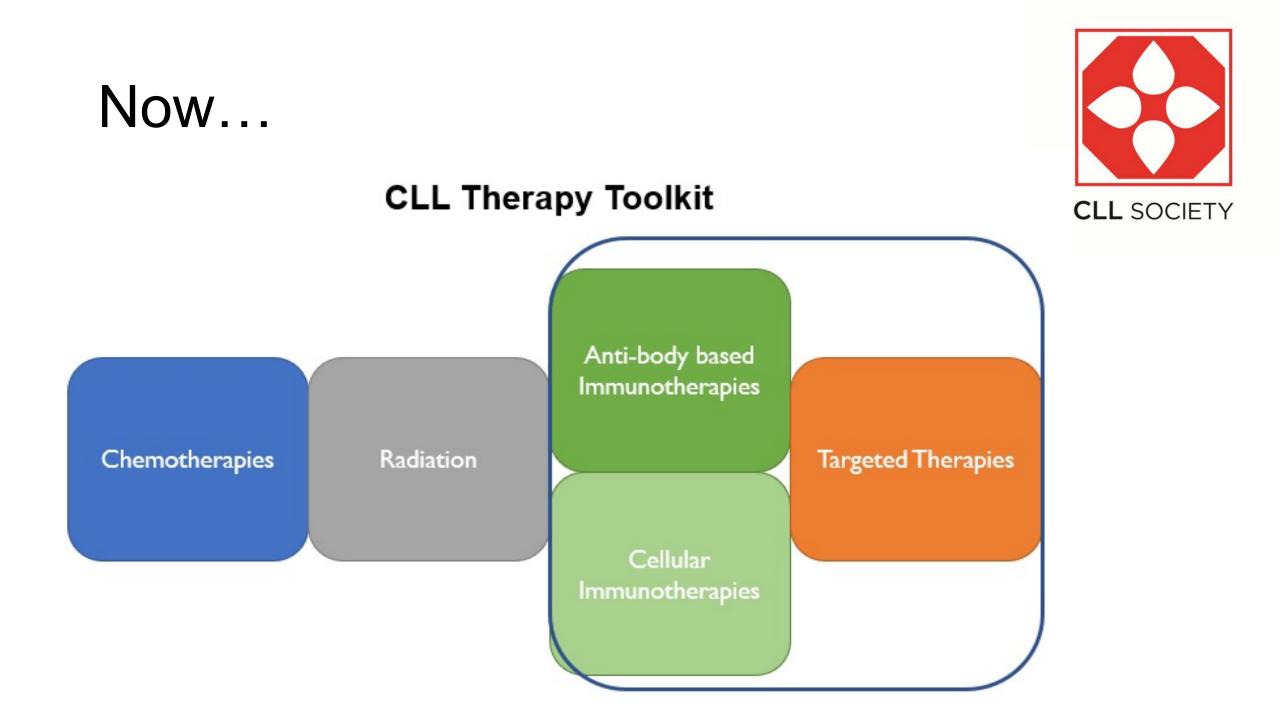
- Bruton's Tyrosine Kinase key for proliferation survival of several Bcell lymphomas
- Inhibiting BTK leads to improved clinical outcomes in several lymphomas
- However...


Acquired Resistance to Current BTK Inhibitors

- Acquired resistance can develop via mutation of C481 of BTK in the binding site of current approved BTK inhibitors
- New BTK inhibitors may not rely upon binding with C481 for activity, and might overcome resistance seen in current BTK inhibitors

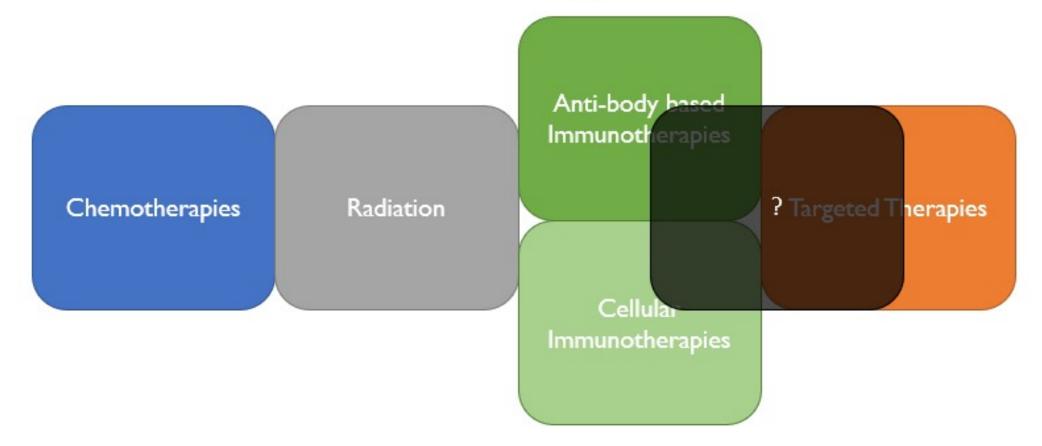
LOXO 305 In R/R CLL and NHL

LOXO-305: Response


	CLL	MCL	Other ^I
Treated	16	8	4
Eligible for response evaluation ²	13	6	2
Overall Response Rate ³	10 (77%)	3 (50%)	l (50%)
CR	_	I (I 7 %)	—
PR	8 (62%)	2 (33%)	—
PR-L	2 (15%)	N/A	-
MR	N/A	N/A	l (50%)
SD	3 (23%)	_	l (50%)
PD	_	2 (33%)	-
Not evaluable ⁴	_	I (I7%)	—

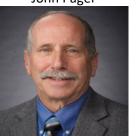
- Overall Response Rate
 66%
- Responses at all dose levels and in BTKiresistant CLL and MCL, regardless of C481S status

Ongoing Clinical Trials with Novel BTK Inhibitors


BTK Inhibitor	Phase	Patient Population
ARQ-531	I/II dose escalation and expansion trial	R/R CLL/SLL, FL, MCL, MZL, or WM who have received ≥ 2 prior systemic tx Expansion cohorts includes R/R CLL after ≥ 2 prior systemic tx including a BTK inhibitor, with or without a C481 mutation
Loxo-305 ²	l/ll dose escalation and expansion trial	CLL/SLL or NHL with disease progression after ≥ 2 prior systemic tx or intolerant to standard of care therapies
Orelabrutinib (ICP-022) ³	l dose escalation	R/R B-cell malignancies (grades1-3a FL, MCL, MZL, and CLL/SLL) after ≥ 1 but ≤ 4 prior lines of systemic tx
Vecabrutinib ⁴	l/ll dose escalation and expansion trial	R/R CLL/SLL or NHL (DLBCL, FL, MCL, MZL,WM) after ≥ 2 lines of prior standard-of-care therapies including a BTK inhibitor

Future???

CLL Therapy Toolkit



Thank You

John Pagel

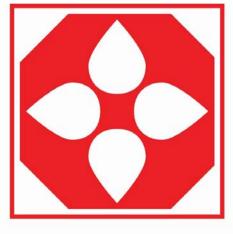
William Bensinger

Daniel Egan

Livia Hegerova

Krish Patel

Raya Mawad



John Pagel, MD, PhD Krish Patel, MD William Bensinger, MD Livia Hegerova, MD Daniel Egan, MD Raya Mawad, MD Vanessa Dunleavy, ARNP Joey Ferry, ARNP Sonia Glennie, ARNP Heather Holdread, ARNP Joanna Fesler, ARNP Judson Hall, PA-C Ami Batchelder, PA-C

Heidi Hohmann, RN Reagan Kurtz, RN Hannah Grainger, RN Summer Clause, RN Brittany Lutnick, RN Katelyn Trainor, RN Carol Dean, RN Domingue Gandy, RN Jennifer Kirschler, RN Stephanie Bardin, PharmD Kayla Gulley, PharmD Julia Lewin, PharmD John Jemison, PharmD

SCI Heme Research

Neil Bailey, MS.c Tenzin Tsomo, BS Ngan Trinh, BS Krystle Pagarigan, BS Kory Barrow, BS Jennie Szeto, BS David Kane, RN Sunshine Gray, RN Wezi Longwe, RN

CLL SOCIETY

Smart Patients Get Smart Care™

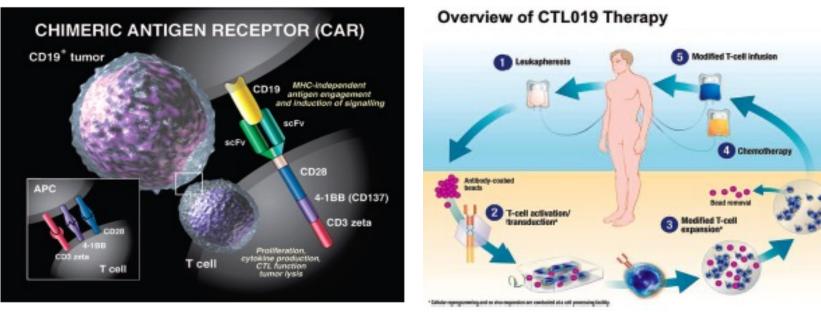
CAR-T Cell Therapy in CLL/SLL

Tanya Siddiqi, MD

April 21, 2021

Background

- CLL is generally considered to be incurable and patients eventually relapse or become refractory to available therapies
- Targeted therapies and novel combinations are rapidly changing the treatment landscape, however:
 - CR and undetectable MRD rates are inadequate with monotherapy
 - Patients who progress on novel therapy have poor outcomes
 - Patients with high risk features have poorer outcomes
- Effective therapies are needed for patients with CLL who have failed Bcell receptor inhibitors and/or other novel therapies



Long-Term Remission of CLL

- Two advanced, chemotherapy-resistant CLL patients with the longest (8+ years) follow-up on any trial of CART19 cells
- Both patients had received five therapies before being treated at the University of Pennsylvania with autologous CART19 cells (tisagenlecleucel) cells in 2010
- Both patients have persistence of CAR-engineered T-cells, and both patients are still in remission as determined by flow cytometry and deep sequencing of IgH rearrangements for over 8 years

CD19 Specific CAR-T Cells

- N = 14; median prior treatments = 5 [1-11]; median cell dose = 1.6x10^8 cells
- 4 CR (29%), 4 (29%) PR, ORR 57%
- CAR-T cells detectable 4 years later in some
- Expected toxicities: B cell aplasia, delayed tumor lysis syndrome (TLS) and cytokine release syndrome (CRS)
- MRD undetectable in CR patients

CLL SOCIETY

CAR-T Cells After Failure of Ibrutinib

- Phase 1/2 open label trial of JCAR014
- R/R CLL pts with ibrutinib exposure [19 PD, 3 intolerant; 2 without PD]; 6 also venetoclax refractory
- n = 24 (96% [23/24] with high risk cytogenetics); med age = 61 years [40-73 years]; med prior lines of treatment = 5 [3-9]; 3 dose levels evaluated
- Ibrutinib discontinued in all prior to lymphodepleting chemotherapy (majority got fludarabine and cyclophosphamide)
- 83% CRS (20/24) and 33% neurotoxicity (8/24); 1 gr 5 CRS/NT
- At 1 month, ORR = 71% (17/24); med f/u = 6.6 month; 17 patients restaged; 88% with marrow disease at baseline were MRD neg and did not progress

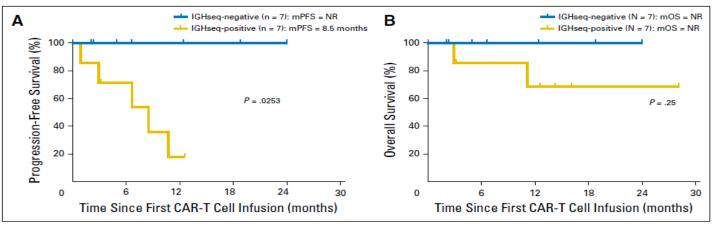


Fig 4. (A) Progression-free survival and (B) overall survival in patients who cleared disease from bone marrow 4 weeks after CAR-T cell infusion by flow cytometry and had no detectable malignant IGH copies (IGHseq-negative) compared with those who had detectable malignant IGH copies (IGHseq-positive). mOS, median OS; mPFS, median PFS; NR, not reached.

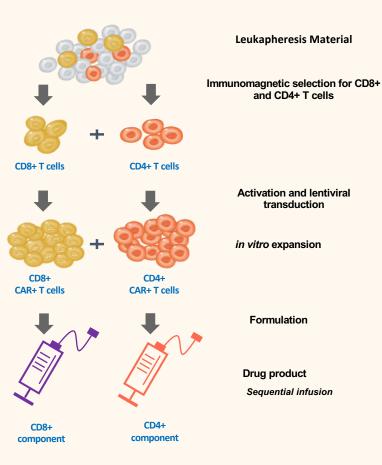
Turtle C, et al. JCO 2017; 35: 3010-20

CAR-T Cells with Concurrent Ibrutinib After Ibrutinib Failure

- Pilot cohort of JCAR014 with concurrent ibrutinib on a Phase 1/2 study
- R/R CLL pts; med age 65 [56-69] years; med prior treatments = 5 [4-7]
- N = 19; 89% (17/19) with high risk cytogenetics
- Ibrutinib began >/= 2 weeks prior to leukapheresis and continued for >/= 3 months after JCAR014
- 2 × 10⁶ CD19 CAR-T cells/kg
- Fludarabine and cyclophosphamide lymphodepletion
- Ibrutinib effects:
 - \circ Mobilize lymphocytes
 - $_{\odot}$ Improve CAR-T cell function
 - $_{\odot}$ Decrease CRS
 - $_{\odot}$ Prevent tumor flare

CAR-T Cells with Ibrutinib

- Well tolerated; 13 patients (68%) received ibrutinib as planned without dose reduction
- One death from probably cardiac arrhythmia in the setting of grade 2 CRS not requiring vasopressors
- Four-week ORR was 83% (15/18); 61% achieved MRD-negative marrow response by IGH sequencing (13/18)
- In this subset, the 1-year OS and PFS probabilities were 86% and 59%, respectively
- JCAR014 plus ibrutinib led to lower CRS severity and lower serum concentrations of CRS-associated cytokines despite equivalent in vivo CAR-T cell expansion


CAR-T Cells with or without Ibrutinib

- Compared with CLL patients treated with CAR-T cells without ibrutinib, CAR-T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in-vivo CAR-T cell expansion
- One-year PFS probabilities in all evaluable patients were 38% and 50% after CD19 CAR-T cell therapy, with and without concurrent ibrutinib, respectively (*P* = .91)

Lisocabtagene Maraleucel (Liso-cel; JCAR017)

CD19-Directed, Defined Composition, 4-1BB CAR-T Cell Product

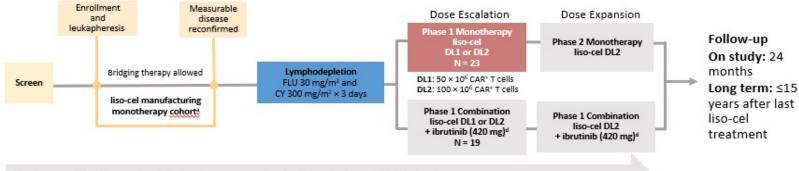
CD8+ and CD4+ CAR+ T cell components are administered separately at equal target doses of CD8+ and CD4+ CAR+ T cells

The defined composition of liso-cel results in:

- Consistent administered CD8+ and CD4+CAR+ T cell dose
- Low variability in the CD8+/CD4+ ratio

Dose and ratio of CD8+ and CD4+ CAR+ T cells may influence the incidence and severity of CRS and neurological events¹⁻³

Updated Follow-Up of Patients with Relapsed/Refractory CLL/SLL Treated with Lisocabtagene Maraleucel in the Phase 1 Monotherapy Cohort of TRANSCEND CLL 004, Including High-Risk and Ibrutinib-Treated Patients



Tanya Siddiqi,¹ Jacob D. Soumerai,² Kathleen A. Dorritie,³ Deborah M. Stephens,⁴ Peter A. Riedell,⁵ Jon Arnason,⁶ Thomas J. Kipps,⁷ Heidi H. Gillenwater,⁸ Lucy Gong,⁸Lin Yang,⁸ Ken Ogasawara,⁹ William G. Wierda¹⁰

¹City of Hope National Medical Center, Duarte, CA, USA; ²Center for Lymphoma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; ³UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; ⁴Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; ⁵University of Chicago Medical Center, Chicago, IL, USA; ⁶Beth Israel Deaconess Medical Center, Boston, MA, USA; ⁷Moores Cancer Center, University of California San Diego Health, San Diego, CA, USA; ⁸Bristol Myers Squibb, Seattle, WA, USA; ⁹Bristol Myers Squibb, Princeton, NJ, USA; ¹⁰The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Virtual ASH Annual Meeting 2020: Presentation 546

TRANSCEND CLL 004 Phase 1/2 Study Design of Liso-cel: A CD19-Directed, Defined Composition, CAR-T Cell Product

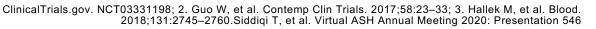
Continue or restart ibrutinib at enrollment through up to 90 days after liso-cel (or longer if clinical benefit)

Key Eligibility for Monotherapy Cohort

- R/R CLL/SLL
- Ineligible for BTKi or prior BTKi failure^b
- High-risk disease^o: ≥2 prior therapies failed
- Standard-risk disease: ≥3 prior therapies failed
- ECOG PS of 0—1

Dose Escalation: mTPI-2 Design²

28-day dose-limiting toxicity period


Primary objectives

- Safety
- Determine recommended dose

Exploratory objectives

- Antitumor activity (iwCLL 2018)³
 - Testing for MRD^e
- Cellular kinetic profile (qPCR)

^aLiso-cel conforming product was successfully manufactured for 23 of 24 patients in the monotherapy phase 1 cohort; one patient who received nonconforming product was excluded from the safety-evaluable population (N = 23). ^bDefined as patients whose disease progressed on BTKi. ^cComplex cytogenetic abnormalities, del(17p), *TP53* mutated, or unmutated *IGHV*. ^dLower dose was used if prior dose reduction was necessary to manage toxicity. ^eMRD was assessed in blood by flow cytometry and/or in bone marrow by next-generation sequencing (both with a sensitivity of $\leq 10^{-4}$). CY, cyclophosphamide; DL, dose level; FLU, fludarabine; iwCLL, International Workshop on CLL; mTPI, modified toxicity probability interval.

Demographic and Baseline Disease Characteristics

Characteristic	Monotherapy Cohort (N = 23)	BTKi Progression/Venetoclax Failure Subgroup ^c (n = 11)
Median age, y (range)	66 (50–80)	68 (59–76)
Male, n (%)	11 (48)	6 (55)
Median time since diagnosis, mo (range)	87.5 (30–209)	106 (30–209)
Bulky disease ≥5 cm, n (%)ª	8 (35)	4 (36)
Median SPD, cm ² (range)	25 (2–197)	41 (2—197)
Median BALL risk score ¹ (range)	2 (0–3)	2 (0–3)
Median LDH, U/L (range)	235 (1–1956)	240 (1–1956)
Stage, n (%)		
Rai stage III/IV	15 (65)	7 (64)
Binet stage C	16 (70)	8 (73)
High-risk feature (any), n (%)	19 (83)	10 (91)
Del(17p)	8 (35)	4 (36)
<i>TP53</i> mutated	14 (61)	8 (73)
Complex karyotype ^b	11 (48)	5 (45)
Median no. of lines of prior therapy (range)	4 (2–11)	5 (4–10)
Ibrutinib progression, n (%)	17 (74)	11 (100)
Ibrutinib intolerant, n (%)	6 (26)	0
Received bridging therapy, n (%)	17 (74)	8 (73)

^aDefined as ≥1 lesion with longest diameter of >5 cm. ^bAt least 3 chromosomal aberrations. ^cDefined as patients whose disease progressed on BTKi and failed venetoclax due to progression, intolerance, or failure to respond after at least 3 months of therapy. BALL, β₂ microglobulin, anemia, LDH, last therapy; SPD, sum of the product of perpendicular diameters. 1. Soumerai JD, et al. *Lancet*

1. Soumeral JD, et al. *Lancet Haematol.* 2019;6:e366-e374.

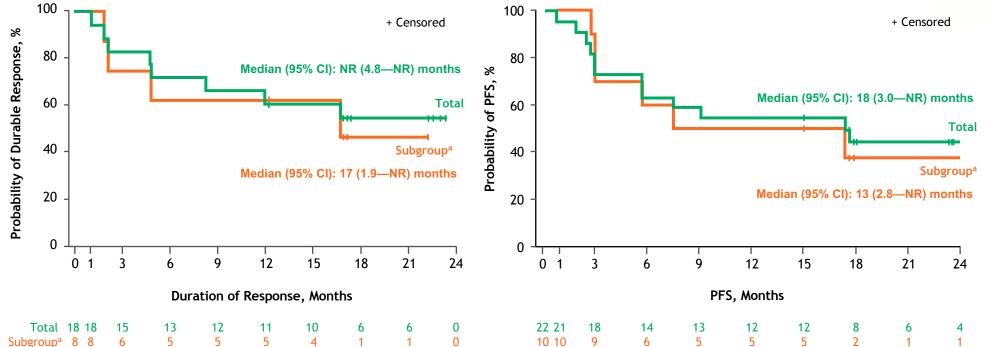
Treatment-Emergent Adverse Events, Cytokine Release Syndrome, and Neurological Events

- Dose-limiting toxicities were reported for two patients at DL2, which resolved
- No late or delayed AEs of concern have emerged with longer follow-up

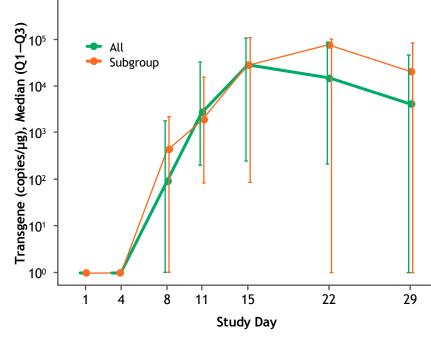
Parameter	Monotherapy Cohort (N = 23)	
Common grade 3/4 treatment-emergent AEs (TEAEs), n		
(%)		
Anemia	17 (74)	7 (64)
Thrombocytopenia	16 (70)	6 (55)
Neutropenia/neutrophil count decrease	16 (70)	8 (73)
Leukopenia	10 (43)	2 (18)
Cytokine release syndrome (CRS) ^d		
All-grade CRS, n (%)	17 (74)	7 (64)
Median time to CRS onset, days (range)	3 (1–10)	1 (1–10)
Median duration of CRS, days (range)	12 (2–50)	15 (5–50)
Grade 3 CRS,ª n (%)	2 (9)	2 (18)
Neurological events (NEs)		
All-grade NEs, n (%)	9 (39)	5 (46)
Median time to NE onset, days (range)	4 (2–21)	4 (2–21)
Median duration of NE, days (range)	20.5 (6–50)	38 (6–50)
Grade ≥3 NEs, ^b n (%)	5 (22)	3 (27)
Management of CRS and/or NEs, n (%)		
Tocilizumab only	6 (26)	1 (9)
Corticosteroids only	1 (4)	1 (9)
Tocilizumab and corticosteroids	8 (35)	4 (36)

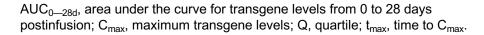
^aNo grade 4 or 5 CRS events were reported. ^bNEs were not mutually exclusive: encephalopathy (n = 3), aphasia (n = 1), confusional state (n = 1), muscular weakness (n = 1), and somnolence (n = 1). ^cDefined as patients whose disease progressed on BTKi and failed venetoclax due to progression, intolerance, or failure to respond after at least 3 months of therapy. ^dBased on Lee criteria (Lee et al, *Blood.* 2014;124:188– 195).

Patient Response at 24-Month Median Follow-Up


- ORR was 82% (CR/CRi, 46%; PR, 36%), with 68% (n = 15/22)^a of patients achieving a rapid response within 30 days
- 27% (n = 6/22) of patients had a deepening of response
- Response was durable; at 12 months, 50% (n = 11/22) were in response and only 2 of these responders progressed beyond 12 months
- Four of the 15 patients with uMRD (blood) response (CR or PR) have progressed, with 3 due to Richter's Transformation (RT)
- The subgroup also demonstrated rapid and durable responses
- Four of 6 progression events in the subgroup were due to RT

^aOne patient had RT before lymphodepleting chemotherapy and was excluded from the efficacy analysis. ^bDefined as patients whose disease progressed on BTKi and failed venetoclax due to progression, intolerance, or failure to respond after at least 3 months of therapy. ^cEvaluated according to iwCLL 2018 criteria. ^dAssessed in blood by flow cytometry and/or in bone marrow by next-generation sequencing (both with a sensitivity of $\leq 10^{-4}$). CRi, CR with incomplete blood count recovery; EOS, end of study; ND, not done; Unk, unknown.


Duration of Response and PFS at 24-Month Median Follow-Up



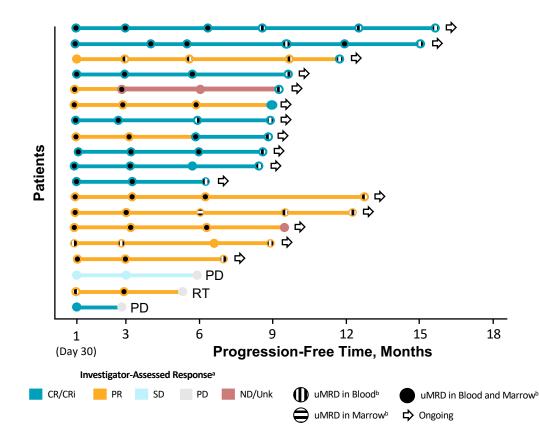
^aDefined as patients whose disease progressed on BTKi and failed venetoclax due to progression, intolerance, or failure to respond after at least 3 months of therapy. NR, not reached.

Cellular Kinetics-Expansion and Persistence

Parameter ^{a,b}	Monotherapy Cohort (N = 23)	BTKi Progression/Venetoclax Failure Subgroup ^c (n = 11)
C _{max}	67,300	67,300
(copies/μg)	(2510–139,000)	(982–163,000)
t _{max}	15	20
(day)	(14–21)	(15–21)
AUC _{0—28d} (day × copies/µg)	470,000 (17,400–1,740,000)	664,000 (7810–1,960,000)

^aMedian (interquartile range, Q1–Q3). ^bEvaluated using qPCR. ^cDefined as patients whose disease progressed on BTKi and failed venetoclax due to progression, intolerance, or failure to respond after at least 3 months of therapy.

- Long-term persistence
 - 50% of patients (n = 6/12) at 12 months
 - 18% of patients (n = 2/11) at 18 months

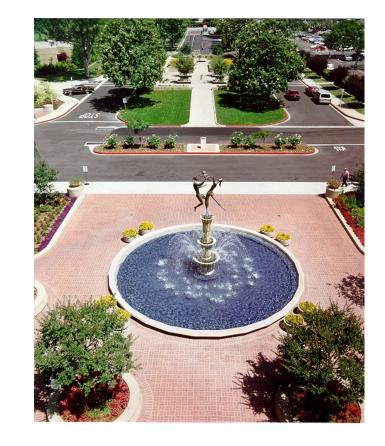

Summary

 Liso-cel treatment elicited rapid, deep, and durable responses in this updated analysis with 24-month median follow-up

- Of the patients who achieved response and have ≥12 months of followup, most have maintained their response; all 7 patients who completed the 24-month study maintained their response
- As previously reported, liso-cel treatment resulted in a high rate of uMRD in this heavily pretreated, high-risk population of patients with R/R CLL/SLL, including those whose disease progressed on BTKi and failed to respond to venetoclax
- No late or delayed safety signals were reported with longer follow-up
- The phase 2 monotherapy expansion of the study is currently enrolling at DL2 (100 × 10⁶ CAR-T cells)

Patient Responses Over Time at the 10-Month Follow-Up

- All responders (n = 18/19) achieved a response by Day 30 after liso-cel
- Among 18 patients with ≥6 months of follow-up, 89% (n = 16/18) maintained or improved response from Day 30
- Of 17 patients who achieved uMRD in blood:
 - All achieved this response by Day 30
 - Only 1 later progressed due to Richter transformation (RT)


^aEvaluated according to iwCLL 2018 criteria. ^bAssessed in blood by flow cytometry and/or in bone marrow by NGS. ND, not done; Unk, unknown.

Other Ongoing CAR-T Trials for CLL

- ZUMA-8 (axi-cel)
- JCAR014 + ibrutinib (University of Washington, Seattle)
- CTL019 + ibrutinib (University of Pennsylvania)
- Novel CAR-T targets like ROR1 and CD22
- Off-the-shelf allogeneic CAR-T cell trials
- Bispecific antibodies

Thank You

Thank You for Attending!

Please take a moment to complete our **Ed Forum survey**, your feedback is important to us.

Join us on May 27th for our webinar **Getting Maximum Benefit from Doctor Appointments**. Registration is open on our homepage.

CLL Society is invested in your long life. Please invest in the long life of the CLL Society by supporting our work.

cllsociety.org/donate-to-cll-society/