

Smart Patients Get Smart Care™

PROTECTING AGAINST INFECTIONS WHEN YOUR IMMUNITY IS IMPAIRED

October 14, 2025

9:30 AM PT, 10:30 AM MT

11:30 AM CT, 12:30 PM ET

THIS PROGRAM IS MADE POSSIBLE THROUGH GENEROUS DONORS AND GRANT SUPPORT FROM

SPEAKERS

William A. Werbel

MD, PhD
(SPEAKER)

Assistant Professor of Medicine, Division of Infectious Disease Section of Transplant and Oncology Infectious Diseases Johns Hopkins University School of Medicine Associate Director of Epidemiology and Quantitative Sciences Johns Hopkins Transplant Research Center

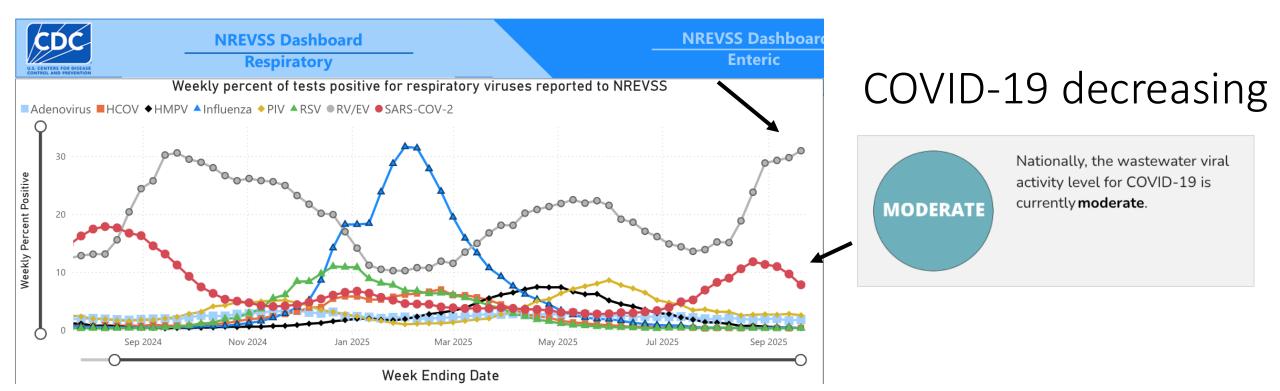
Brian Koffman
MDCM (retired), MS Ed
(MODERATOR)

Co-Founder Emeritus
CLL Society

Smart Patients Get Smart Care™

Protecting Against Infections When Your Immunity is Impaired

William Werbel, MD, PhD
Assistant Professor
Transplant and Oncology
Infectious Diseases

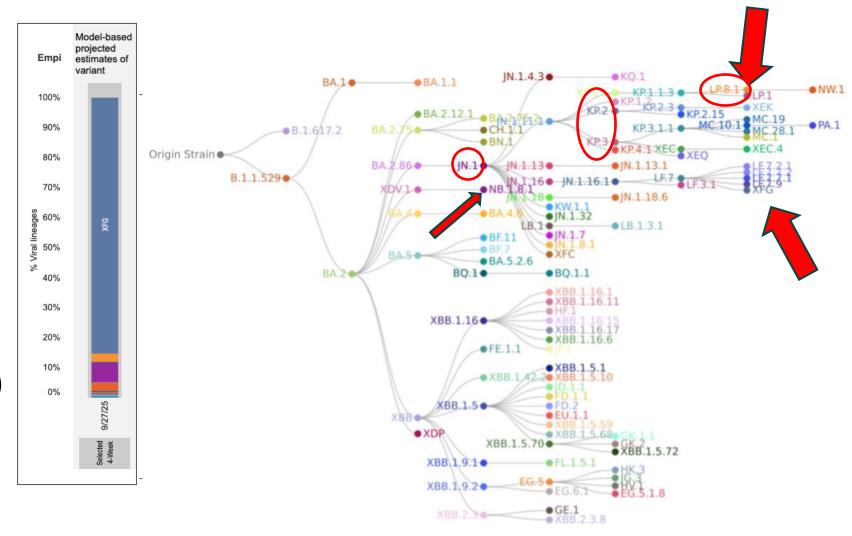

Johns Hopkins University School of Medicine

Infectious Diseases Webinar

Outline

- Active infection "status report" and forecast
- General and CLL-specific risk factors for infections
- Brief immune system review and impact of medications
- Ways to reduce risk (behavioral, pharmacological)
- Updates in respiratory virus prevention and antiviral advances

Viral Circulation: Wastewater Monitoring



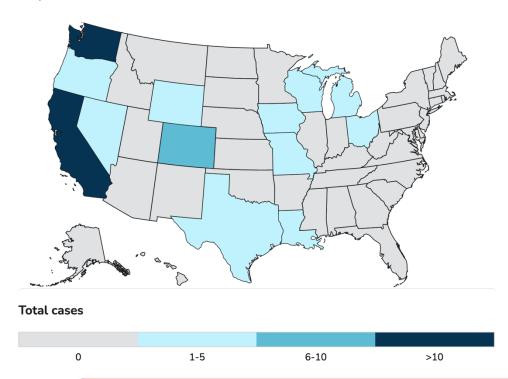
Note: enteroviruses particularly common in late summer and early fall

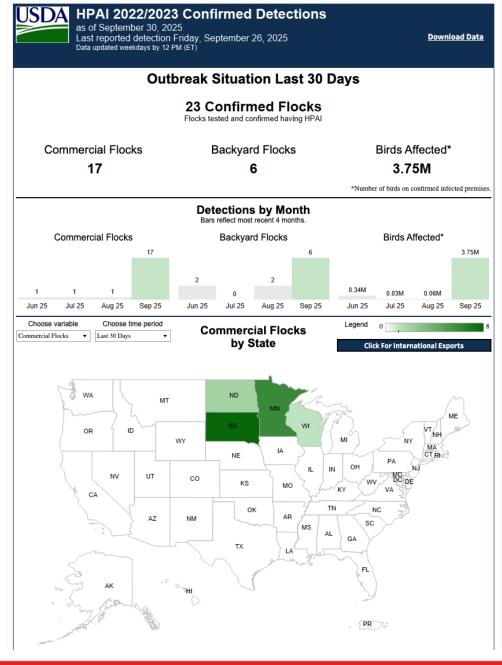
COVID-19 Variant Update and Forecast

- **XFG** overtook LP.8.1 this summer (**NB.1.8.1** present)
- "Grandchildren" of JN.1/KP.2 and "cousins" of LP.8.1 (i.e., 2026 updated vaccine strain)
- Pemivibart (Pemgarda®)
 mAb appears <u>active</u>
 against XFG (<u>less</u> active
 against NB.1.8.1)

Highly Pathogenic Avian Influenza (H5N1, "Bird Flu")

- No recent human cases and no clear human-to-human transmission
- Ongoing sporadic poultry outbreaks (backyard & commercial), cattle, mammals

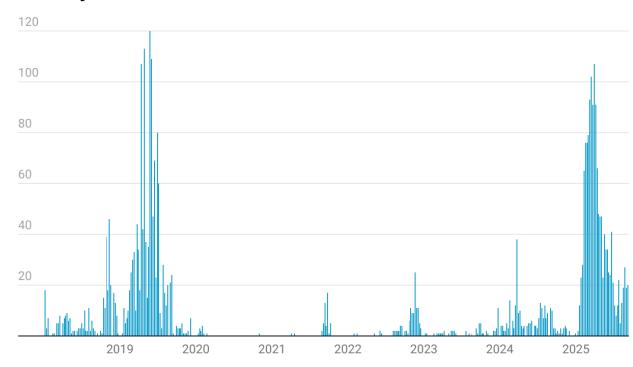

National Total Cases: 70


Cases	Exposure Source	
41	Dairy Herds (Cattle)*	
24	Poultry Farms and Culling Operations*	
2	Other Animal Exposure†	
3	Exposure Source Unknown‡	

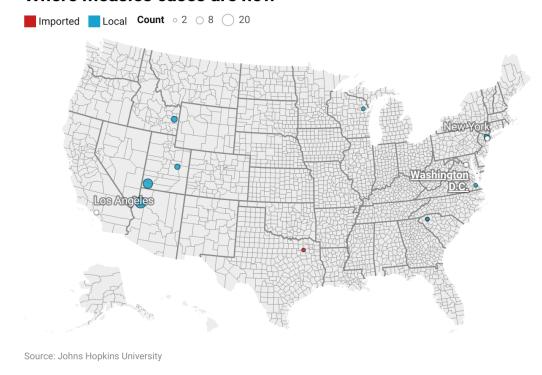
NOTE: One additional case was previously detected in a poultry worker in Colorado in 2022. Louisiana reported the first H5 bird flu death in the U.S.

*Exposure Associated with Commercial Agriculture and Related Operations [†]Exposure was related to other animals such as backyard flocks, wild birds, or other mammals

‡Exposure source was not able to be identified



US Measles Outbreak: Fading, yet not Gone


Weekly measles cases in the U.S.

Source: Johns Hopkins University

Worst outbreak in 21st century: 1,522 confirmed cases 94% unvaccinated or unknown status; 55% ≤18 yrs 12% hospitalized, 3 confirmed deaths

Where measles cases are now

About 50 cases in past 2 weeks Mostly in Utah, Arizona, Minnesota Note: ongoing outbreaks in Canada (Alberta)

(Tentative) Forecasting...

- Current COVID-19 wave likely fading over next 2 weeks, entering lull for a few weeks
- Traditional respiratory virus seasons tends to begin in late October/early November
- Typically starts with RSV (Oct/Nov) → influenza & COVID-19 rise (Nov/Dec) → all peaking together in December and January (climate, holidays, behavior)
- Hence, now is a good time to get vaccinated vs RSV, flu, & COVID-19
 - Greatest protection vs flu and COVID-19 are in the first 2-3 months
 - RSV protection might be more durable (see later slides)
 - Be aware the "tail" of flu season stretches out to March-April

Approach to Assessing Infectious Risks in People with CLL

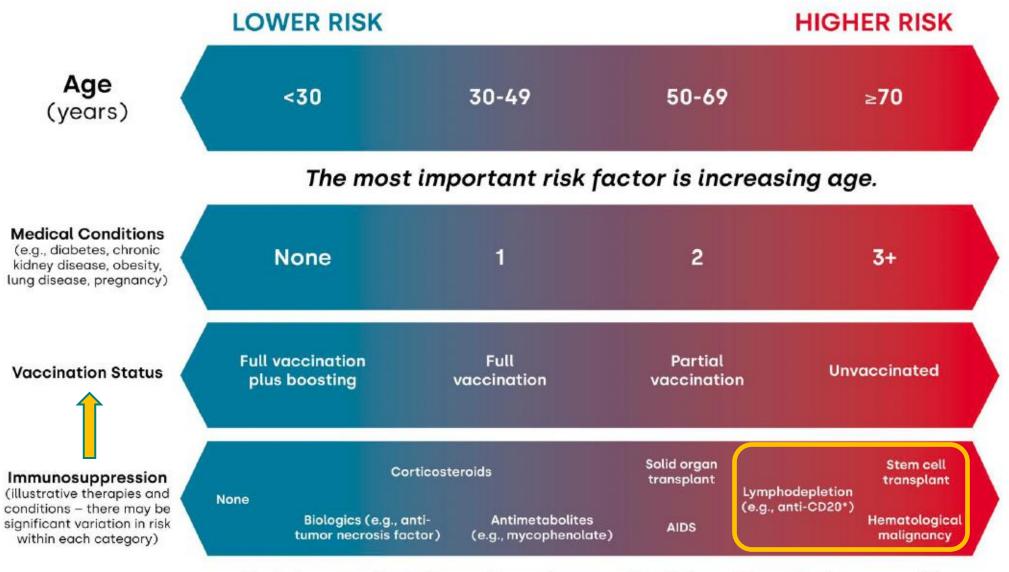
How Infectious Diseases Doctors Judge Risk: 1) Assess "The Net State of Immunosuppression"

- Sum of immune system impairments → determines type & severity of immunocompromise → specific infection risk
 - Extremes of age (very young or older adults)
 - Medical conditions (e.g., diabetes, kidney or liver diseases, poor nutrition)
 - Immunosuppressive **medications** (type, dose, duration)
 - **Specific immune defects** (e.g., low neutrophil counts, low B and T cell counts, hypogammaglobulinemia, splenic dysfunction)
 - Certain **infections** (e.g., HIV, CMV, Measles)
 - Barrier defects (e.g., skin, mouth, gut, IV lines, trauma, surgeries)

2) Past and Current Life Exposures Also Matter!

- Influences risks of **new infections** from environment, as well as **reactivation of old infections** from the body
- Daily activities, interactions with others, residence/region
- Ex) environmental exposure \rightarrow possible infection risks
 - Gardening, camping, birds, wood, mold → fungus
 - Travel, outdoors, animals → ticks, mosquito-borne

 - Travel or life abroad, health work, prison → tuberculosis


Mapping "Net State of Immunosuppression" to Individuals with CLL

- Often older patients (60+ years of age) with multiple other health issues
- CLL saps the normal immune system, particularly lymphocytes (e.g., B cells & their "good" antibodies)
- Treatments for CLL (steroids, chemo, BMT, CAR-T) impair other parts of the immune system in multiple ways

These make it easier to get infections, harder to fight them off, and reduces impact of preventative vaccines

COVID-19 Risk Continuum

Sociodemographic factors and non-pharmaceutical interventions affect exposure risk

Markers & Contributions to Measles Risk

Factor	Lowest Risk	Highest Risk
Birth Year	Before 1957	After 1957*
Vaccination Status	2 live attenuated pre- immunosuppression	Unvaccinated
Measles Ab Test	Positive	Negative
Immunosuppression	>2 years since transplant	 <1-2 years since bone marrow transplant
	- On 1 or low doses of immunosuppression	- Multiple immunosuppressant
	Normal lymphocyte counts (e.g., >1000)On IVIG replacement (if needed)	medicationsLow lymphocyte blood countsLow immunoglobulins without replacement

- *People born in 1960s and 1970s might be at higher risk because:
- Relatively older
- Unlikely natural measles immunity
- Not 2x vaccinated

Immune System Defects: Basic Primer

Immune Cell Type	Function	Deficiency Risks
Neutrophils	Eat/kill pathogens	Bacteria, fungi, some viruses (herpes)
Macrophages	Eat pathogens, signal other cells	Bacteria, fungi, DNA viruses, mycobacteria (TB), parasites
Lymphocytes	B: make antibodies T: signaling (CD4), killing (CD8)	Viruses, bacteria, some fungi
Cytokines, Kinases	Alarm (or cool down) signals	Variable

Meds Knock Down Cells -> Raise Risks

Meds	Cells Affected	Notable Infections	Preventative Medication?		on?	
			Herpes	Hep B	Fungi	PJP
Steroids (prednisone)	All Dose [>20 mg] & duration [>2-4 wk] matter	Bacterial skin infections and pneumonia, viral infections, fungal infections, hepatitis B	+	+/-	+/-	+
Anti-CD20+ (obinutuzumab , rituximab)	B cells	Viral infections (herpes, respiratory, hepatitis B), some fungal pneumonia	+	+	+/-	+/-
BTKi (ibrutinib, acalabrutinib, zanabrutinib)	B cells (& off- target neutrophil)	Viral infections (herpes, respiratory), fungal infections	+	+/-	+	+

Bispecific Antibodies (bsAbs, BiTEs)

- "CAR-T" in a bottle: best studied for myeloma, now used for lymphomas (epcoritamab, mosunetuzumab, glofitamab)
- Designed to join and activate a patient's killer T cells to engage & destroy a patient's B cells,
 - Severe longterm **hypogammaglobulinemia (low antibody)** \rightarrow viruses, pneumonia, sinusitis
- Frequently given with **high dose steroids +/- tocilizumab** (anti-IL6 [alarm cytokine] blocker) to reduce or treat reactions ("CRS") → **further increases infection risk (all kinds)**

Meds	Cells Affected	Notable Infections	Preventative Medication?				
			Herpes	Нер В	Fungi	PJP	IVIG
bsAb	B cells	Viral infections (herpes, respiratory, hepatitis B), some fungal pneumonia	+	+	+/-	+	+

Example: Putting It Together for HSV (Herpes) & VZV (Shingles)

Overall Infection Risk in Patients with Cancer ^a	Disease/Therapy Examples	Minimum Duration of Antiviral Prophylaxis
Low	Standard chemotherapy regimens for solid tumors	No prophylaxis unless prior HSV episode; inneeded, treat during active therapy including periods of neutropenia
Intermediate	 Autologous HCT Lymphoma Multiple myeloma CLL^b Purine analog therapy (eg, fludarabine) 	HSV prophylaxis ^j Consider during active therapy and possibly longer depending on degree of immunosuppression VZV prophylaxis ^j Consider for at least 6–12 months after autologous HCT
High (Acute leukemia Proteasome inhibitors Alemtazumab therapy Allogeneic HCT GVHD requiring significant escalation of immunosuppression	HSV prophylaxis during active therapy including periods of neutropenia ^j VZV prophylaxis during active therapy including periods of neutropenia ^j HSV prophylaxis ^j • Minimum of 2 months after alemtuzumab and until CD4 ≥200 cells/mcL VZV prophylaxis ^j • Prophylaxis should be considered for at least 1 year after allogeneic HCT

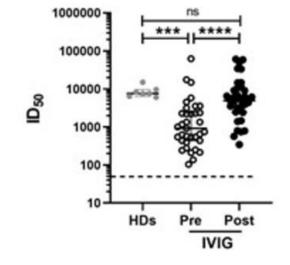
Generally recommend prophylaxis if:

- neutropenia ($<500 \times >7 \text{ dys}$) and/or severe lymphopenia (<500)
- receiving active treatments for CLL or post BMT/CAR-T
- prior history

Reminder: General Approaches to Preventing Communicable Infections

Norovirus Enteroviruses (HFM)

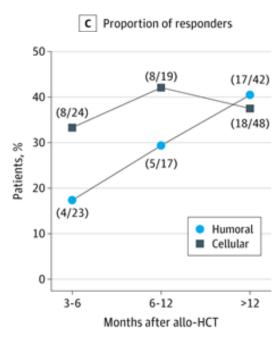
- Wash hands (note: hand sanitizer works for most, but not all viruses).
- Minimize interactions with large groups of people and wear a wellfitted, high-quality mask:
 - When virus circulation is high
 - Setting is poorly ventilated
- Ensure close contacts around you are (1) vaccinated and (2) let you know if they're feeling ill and/or test before gatherings
- Immunoprophylaxis
 - Vaccines ("active")
 - Preventative antibodies ("passive")
- Prophylactic medications (either pre- or post-exposure to infection)


Vaccines: The "How," "Why," and Limits

- Vaccines provide a **head start** on seeing some important part of an infection
 - Often need to be shown 2+ times to gear up immunity (prime → boost)
- Stimulates **B cells** to produce antibody (Ig), store memory for a rainy day
 - Antibodies bind and neutralize the invaders
- Builds **T cell memory** to:
 - Send alarm signals when the infection is sensed ("helper T cells")
 - Develop killer T cells to destroy infected cells → key to prevent severe disease
- If a person 1) does not have enough immune cells or 2) the cells are weakened by underlying medical issues or medicines \rightarrow vaccine are less <u>fully</u> protective
 - May need more or different vaccines (higher dose or with adjuvants)

Add-Ons: Passive Antibody Prophylaxis

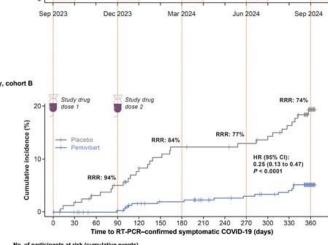
- Either a mix of donated antibodies against infection (<u>IVIG</u>) or a high dose of a specific antibody (monoclonal antibody; <u>mAb</u>)
- **IVIG** or subcutaneous Ig usually given every 2-4 weeks
 - Best data for people with known hypogammaglobulinemia (low antibody, IgG <400-600) → may be 25-35% people with new CLL diagnosis
 - Especially if history of recurrent sinus or lung infections


Omicron

- mAb usually given every 3-6 months, for high-risk and/or immunocompromised people, to protect against specific viral infections
 - Strength = weakness → very specific so if a virus changes, could escape drug activity

Recent Developments in Preventing Viral Infections

RSV Vaccines -> Data in People with Cancers


- How good is the immune response after BMT?
 - Very big range in antibody and T cell responses
 - Worse if: <u>closer to BMT</u>, if on immunosuppressive meds for GVHD, low lymphocyte counts
- How well do they prevent severe disease?
 - Decent (40-50%) protection for 1 season in immunocompromised people, worse for BMT
 - Dropped significantly by second season (<10%)
- Need for a booster? Very active area of study, limited info
- Which vaccine is best? We don't know.
 - Some prefer the adjuvanted vaccine (GSK)
 - No info for mRNA-based vaccine (Moderna)

Sep 2023 Dec 2023 Mar 2024 Jun 2024 Sep 2020

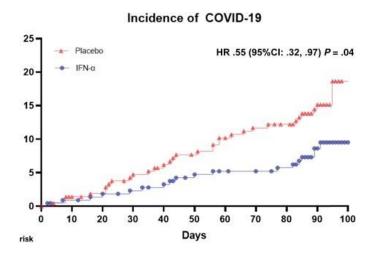
Monoclonal antibodies

- Pemivibart (PemgardaTM, infusion against COVID)
 - 84% reduction in symptomatic COVID at 6 months
- Clesrovimab (EnflonsiaTM, infusion against RSV for adults)
 - 60% effective vs RSV requiring medical attn, 84% vs hospitalization

Penisibart 317 (0) 310 (0) 306 (0) 305 (1) 293 (5) 289 (6) 289 (6) 277 (7) 274 (8) 272 (9) 269 (10) 266 (12) 169 (1) Placebo 160 (0) 157 (3) 152 (5) 148 (8) 141 (13) 136 (16) 133 (19) 132 (19) 132 (19) 130 (20) 128 (22) 123 (25) 76 (25)

Long-acting antivirals

- CD388 (zanamivir) versus influenza
 - Oseltamivir (TamifluTM) "cousin", in clinical trials
 - 60-75% effective vs influenza-like illness over 6 months in healthy unvaccinated adults


Nasal spray prophylaxis vs COVID-19...?

Azelastine

- OTC "Hay fever" spray, 3x/day vs placebo
- 2% vs 7% COVID; 8% vs 19% all infxns
- **Note**: Took 5x/day x 3 days if pt felt ill (interfere with test results?)

Interferon alpha (in people with cancer [9% CLL])

- Antiviral alarm signal spray, 1x/daily vs saline spray
- 8% vs 14% COVID; 5% vs 5% all other infxns
- Note: Mostly early pandemic data

Challenges Related to Shifting US Vaccine Discourse and Policies

- Historically there was high agreement between the US CDC, the ACIP, and major medical societies (IDSA, AAP, ACOG, etc)
- Now there are conflicting recommendations, which is confusing
- CIDRAP (U Minnesota) compiling outside expert opinions and data for vaccine guidance via the Vaccine Integrity Project
 - https://www.cidrap.umn.edu/vaccine-integrity-project
 - https://www.idsociety.org/ID-topics/special-topics/immunization/

COVID-19 Vaccine Access

- Moving target and varies by state, pharmacy, and insurance
- Adults ≥65 years and adults ≥18 with immunocompromising conditions should have both access and insurance coverage (if in doubt, get an Rx)
- Access and coverage for healthy close contacts or health care workers less certain; e.g., out of pocket, require Rx, attest to a health condition
- Multiple states issuing orders to assure vaccine access, but does not necessarily assure insurance coverage, e.g., West Coast Health Alliance
- Consortium (AHIP) committed to cover COVID-19, flu vax through 2026

Summary

- Respiratory season is on the horizon → good time to get your RSV, flu, and COVID vaccines
- Know your risk (net state of immunosuppression): older age, medical conditions, vaccines, immunosuppression intensity
- Certain medicines have strong links to certain infections
 - Steroids, BTKi, anti-CD20, BMT, bsAb/BiTE → prophylactic drugs
- Vaccine immunity is lower in people with CLL, but critical
 - Role of passive immunoprophylaxis (antibody add-ons)
- Several important advances on the horizon, stay informed

Johns Hopkins Transplant Research Center

Clinical Trials

Directors

Elizabeth King, MD PhD Surgical

Christine Durand, MD Medical

Daniel Warren, PhD Strategic

Diane Brown, RN, MSN Assistant Director

Research Core Leaders

Ethics & Qualitative Research

Hannah Sung, PhD Olivia Kates, MD

Nate Permpalung, MD MPH

Translational/Basic Science

John Baddley, MD

Full Time Staff

Bamidele Dayo Adeleke, MBA BS Gifty Amankwah, MPH, MHA Baimaii, MS Brittany Barnaba, MS RN CNL Yolanda Eby, MS Grace Link-Barnes, BSN MPH Nadine Brown, BS Kathleen Connor Woudase Gallo, BS Shilpa Gopinath, MBBS MPH MSc Xori Green, BS Skylar Gunthrop, BSPH Feben Habtehyimer, BS Camille Hage, MD MPH Thuy Hanley, MPH BS Sherif Helmy, MD Karen Horner, BS Sarah Hussain, MBBS MSHI Jill Kessler, MS MSL CCRP Bahati Kuffar, BA Francis Lapid, BS

Casev Leo. MSN RN

Tao Liang, MPH

Darin Ostrander, PhD

Operations

Julia López, BA Na Lu, BM, MA Indraneel Massie, BA Zeba Nauroz, BDS, MPH Natalie Overtoom, MPH Linda Paredes, MS BA Alexander Patton Alexis Peav. RN Shakila Rajack, MBBS Moreno S. Rodrigues, PhD Gracie Rozek, BS Jordan Salas, MCR BS Tabindah Khan Saved, MSc Isabella Sengsouk, BS Ashish Solanki, BSN RN Quinten Steams, BA Ramona Weber, MSEd, MA Arvnne Wilburn, MPH BS James Wiles, RN BSN Mobo Worjloh, MHI Jiashu Xue, MS BS Joshua Xianming Zhu, MHS

Josephine Yodzis

Management

Margaret Chahoud, BS Michelle Prizzi, BA Sarah Hussain, MBBS MSHI

Part Time Staff

Nicole Fortune Hernandez, BS, MSPH Catalina Hernandez Valencia Whitney Langlee, MPH Alex Phillip Alain Phung, BS BA

Arya Satish, BS Roni Shanoada, MD MSc Aura Teles, BS Lisa Wolf, RN

Affiliate Members

Robin Avery, MD Anna Beavis, MD Errol Bush, MD Gerald Brandacher, MD Daniel C. Brennan, MD Andrew Cameron, MD Olga Charnaya, MD Victor Chen, MD Willa Cochran, MSN, CRNP Josef Coresh, MD PhD

Elliott Haut, MD PhD Abimereki Muzaale, MBChB MPH Lauren Nicholas, PhD MPP Shane Ottman, MD Taniala Purnell, PhD MPH Aliaksei Pustavoitau, MD Daniel Scharfstein, ScD Aly Strauss, PhD MD MIE Linds ey Toman, PharmD Jason Wheatley, LCSW-C

Epidemiology & Quantitative Analysis

William Werbel, MD PhD

Andrew Karaba, MD PhD

Aaron Tobian, MD PhD

Medical Students

Alice Zhou, MS Armaan Akbar, BS Mary Grace Bowring, MPH Sarah Frey Corey Joseph, PhD

Jobaer Amin, MBBS Tait Huso, MD Miruthula Tamal Selvan, PhD

James Flanary, MD Jessica Ruck, MD Lawrence Brown, MD

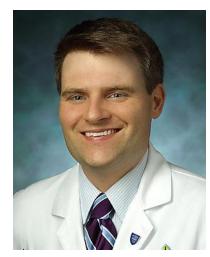
Surgery Residents

Mackenzie Eagleson, MD Victoria Bendersky, MD

Fellows

Andrew Sulaiman, DO PhD Fatima Zaman, MBBS

Emerging Pathogens of Concern in Immunocompromised Persons



Emerging Pathogens at the Transplant Research Center

www.emergingpathogens.jhmi.edu

William Werbel, MD, PhD
Transplant Infectious Disease
Johns Hopkins

Andrew Karaba, MD, PhD
Transplant Infectious Disease
Johns Hopkins

Xori Green, BS
Research Program Coordinator
Transplant Research Center

Maggie Chahoud, BS Research Program Manager Transplant Research Center

Woudase Gallo, BS
Research Program Coordinator
Transplant Research Center

Moreno Rodrigues, PhD

Biostatistician

Transplant Research Center

AUDIENCE Q&A

THIS PROGRAM IS MADE POSSIBLE THROUGH GENEROUS DONORS AND GRANT SUPPORT FROM

THANK YOU FOR ATTENDING!

Please take a moment to complete our post-event survey, your feedback is important to us

If your question was not answered, please feel free to email: asktheexpert@cllsociety.org

Join us for our next virtual event,

ASK ME ANYTHING FEATURING DR. MEGHAN THOMPSON

November 19th

CLL SOCIETY is invested in your long life. Please invest in the long life of the CLL SOCIETY by supporting our work: cllsociety.org/donate-to-cll-society/

